Python Developer Guide
Other documentationsDemoCommunityGitHub
  • Forest Admin
  • Getting started
    • How it works
    • Quick start
      • Flask
      • Django
    • Create your agent
    • Troubleshooting
    • Migrating legacy agents
      • Pre-requisites
      • Recommendations
      • Migration steps
      • Code transformations
        • API Charts
        • Live Queries
        • Smart Charts
        • Route overrides
        • Smart Actions
        • Smart Fields
        • Smart Relationships
        • Smart Segments
  • Data Sources
    • Getting Started
      • Collection selection
      • Naming conflicts
      • Query interface and Native Queries
        • Fields and projections
        • Filters
        • Aggregations
    • Provided data sources
      • SQLAlchemy
      • Django
        • Polymorphic relationships
    • Write your own
      • Translation strategy
        • Structure declaration
        • Capabilities declaration
        • Read implementation
        • Write implementation
        • Intra-data source Relationships
      • Contribute
  • Agent customization
    • Getting Started
    • Actions
      • Scope and context
      • Result builder
      • Static Forms
      • Widgets in Forms
      • Dynamic Forms
      • Form layout customization
      • Related data invalidation
    • Charts
      • Value
      • Objective
      • Percentage
      • Distribution
      • Leaderboard
      • Time-based
    • Fields
      • Add fields
      • Move, rename and remove fields
      • Override binary field mode
      • Override writing behavior
      • Override filtering behavior
      • Override sorting behavior
      • Validation
    • Hooks
      • Collection hook
      • Collection override
    • Pagination
    • Plugins
      • Write your own
    • Relationships
      • To a single record
      • To multiple records
      • Computed foreign keys
      • Under the hood
    • Search
    • Segments
  • Frontend customization
    • Smart Charts
      • Create a table chart
      • Create a bar chart
      • Create a cohort chart
      • Create a density map
    • Smart Views
      • Create a Map view
      • Create a Calendar view
      • Create a Shipping view
      • Create a Gallery view
      • Create a custom tinder-like validation view
      • Create a custom moderation view
  • Deploying to production
    • Environments
      • Deploy on AWS
      • Deploy on Heroku
      • Deploy on GCP
      • Deploy on Ubuntu
    • Development workflow
    • Using branches
    • Deploying your changes
    • Forest Admin CLI commands
      • init
      • login
      • branch
      • switch
      • set-origin
      • push
      • environments:create
      • environments:reset
      • deploy
  • Under the hood
    • .forestadmin-schema.json
    • Data Model
      • Typing
      • Relationships
    • Security & Privacy
Powered by GitBook
On this page

Was this helpful?

  1. Frontend customization
  2. Smart Charts

Create a bar chart

PreviousCreate a table chartNextCreate a cohort chart

Last updated 1 year ago

Was this helpful?

This is the official documentation of the forestadmin-agent-django and forestadmin-agent-flask Python agents.

This second example shows how you can achieve any format of charts, as you can benefit from external libraries like .

import Component from '@glimmer/component';
import { loadExternalJavascript } from 'client/utils/smart-view-utils';
import { action } from '@ember/object';
import { tracked } from '@glimmer/tracking';
import { inject as service } from '@ember/service';

// Settings
const color = 'steelblue';
const height = 500;
const width = 800;
const margin = { top: 30, right: 0, bottom: 30, left: 40 };

// Component
export default class extends Component {
  @service lianaServerFetch;
  @tracked chart;

  constructor(...args) {
    super(...args);
    this.load();
  }

  async load() {
    // Load charting library
    await loadExternalJavascript('https://d3js.org/d3.v6.min.js');

    // Load data from agent
    const response = await this.lianaServerFetch.fetch(
      '/forest/_charts/alphabetfrequency',
      {},
    );
    const alphabet = await response.json();

    // Render chart
    this.renderChart(alphabet);
  }

  @action
  async renderChart(alphabet) {
    const data = Object.assign(
      alphabet.sort((a, b) => d3.descending(a.value, b.value)),
      { format: '%', y: '↑ Frequency' },
    );

    const x = d3
      .scaleBand()
      .domain(d3.range(data.length))
      .range([margin.left, width - margin.right])
      .padding(0.1);

    const y = d3
      .scaleLinear()
      .domain([0, d3.max(data, d => d.value)])
      .nice()
      .range([height - margin.bottom, margin.top]);

    const xAxis = g =>
      g.attr('transform', `translate(0,${height - margin.bottom})`).call(
        d3
          .axisBottom(x)
          .tickFormat(i => data[i].username)
          .tickSizeOuter(0),
      );

    const yAxis = g =>
      g
        .attr('transform', `translate(${margin.left},0)`)
        .call(d3.axisLeft(y).ticks(null, data.format))
        .call(g => g.select('.domain').remove())
        .call(g =>
          g
            .append('text')
            .attr('x', -margin.left)
            .attr('y', 10)
            .attr('fill', 'currentColor')
            .attr('text-anchor', 'start')
            .text(data.y),
        );

    const svg = d3.create('svg').attr('viewBox', [0, 0, width, height]);

    svg
      .append('g')
      .attr('fill', color)
      .selectAll('rect')
      .data(data)
      .join('rect')
      .attr('x', (d, i) => x(i))
      .attr('y', d => y(d.value))
      .attr('height', d => y(0) - y(d.value))
      .attr('width', x.bandwidth());

    svg.append('g').call(xAxis);
    svg.append('g').call(yAxis);

    this.chart = svg.node();
  }
}
<div class='c-smart-view'>{{this.chart}}</div>

In the above snippet, notice how we import the D3js library. You can, of course, choose to use any other library of your choice.

The resulting chart can be resized to fit your use.

This bar chart is inspired by .

this one ↗
D3js ↗