Python Developer Guide
Other documentationsDemoCommunityGitHub
  • Forest Admin
  • Getting started
    • How it works
    • Quick start
      • Flask
      • Django
    • Create your agent
    • Troubleshooting
    • Migrating legacy agents
      • Pre-requisites
      • Recommendations
      • Migration steps
      • Code transformations
        • API Charts
        • Live Queries
        • Smart Charts
        • Route overrides
        • Smart Actions
        • Smart Fields
        • Smart Relationships
        • Smart Segments
  • Data Sources
    • Getting Started
      • Collection selection
      • Naming conflicts
      • Query interface and Native Queries
        • Fields and projections
        • Filters
        • Aggregations
    • Provided data sources
      • SQLAlchemy
      • Django
        • Polymorphic relationships
    • Write your own
      • Translation strategy
        • Structure declaration
        • Capabilities declaration
        • Read implementation
        • Write implementation
        • Intra-data source Relationships
      • Contribute
  • Agent customization
    • Getting Started
    • Actions
      • Scope and context
      • Result builder
      • Static Forms
      • Widgets in Forms
      • Dynamic Forms
      • Form layout customization
      • Related data invalidation
    • Charts
      • Value
      • Objective
      • Percentage
      • Distribution
      • Leaderboard
      • Time-based
    • Fields
      • Add fields
      • Move, rename and remove fields
      • Override binary field mode
      • Override writing behavior
      • Override filtering behavior
      • Override sorting behavior
      • Validation
    • Hooks
      • Collection hook
      • Collection override
    • Pagination
    • Plugins
      • Write your own
    • Relationships
      • To a single record
      • To multiple records
      • Computed foreign keys
      • Under the hood
    • Search
    • Segments
  • Frontend customization
    • Smart Charts
      • Create a table chart
      • Create a bar chart
      • Create a cohort chart
      • Create a density map
    • Smart Views
      • Create a Map view
      • Create a Calendar view
      • Create a Shipping view
      • Create a Gallery view
      • Create a custom tinder-like validation view
      • Create a custom moderation view
  • Deploying to production
    • Environments
      • Deploy on AWS
      • Deploy on Heroku
      • Deploy on GCP
      • Deploy on Ubuntu
    • Development workflow
    • Using branches
    • Deploying your changes
    • Forest Admin CLI commands
      • init
      • login
      • branch
      • switch
      • set-origin
      • push
      • environments:create
      • environments:reset
      • deploy
  • Under the hood
    • .forestadmin-schema.json
    • Data Model
      • Typing
      • Relationships
    • Security & Privacy
Powered by GitBook
On this page
  • How does it work?
  • Examples
  • Performance

Was this helpful?

  1. Agent customization
  2. Fields

Add fields

This is the official documentation of the forestadmin-agent-django and forestadmin-agent-flask Python agents.

Forest Admin allows creating new Fields on any Collection, either computationally, by fetching data on an external API or based on other data that is available on the connected data sources.

How does it work?

When creating a new field you will need to provide:

Field
Description

column_type

dependencies

List of fields that you need from the source records and linked records in order to run the handler

get_values

Handler which computes the new value for a batch of records

enum_values (optional)

When columnType is Enum, you must specify the values that the field will support

Examples

Adding a field by concatenating other fields

This example adds a user.displayName field, which is computed by concatenating the first and last names.

from typing import Any, List

from forestadmin.datasource_toolkit.context.collection_context import (
    CollectionCustomizationContext
)
from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAlias

def get_display_name(
    records:List[RecordsDataAlias], context: CollectionCustomizationContext
) -> List[Any]:
    return [f"{record['firstName']} {record['lastName']}" for record in records]

# "User" Collection has the following structure: { id, firstName, lastName }
agent.customize_collection("user").add_field(
    "displayName",
    {
        "column_type": "String",
        "dependencies": ["firstName", "lastName"],
        "get_values": get_display_name,
    },
)

Adding a field that depends on another computed field

This example adds a user.displayName field, which is computed by concatenating the first and last names, and then another which capitalize it.

from typing import Any, List

from forestadmin.datasource_toolkit.context.collection_context import (
    CollectionCustomizationContext
)
from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAlias

def get_display_name(
    records:List[RecordsDataAlias], context: CollectionCustomizationContext
) -> List[Any]:
    return [f"{record['firstName']} {record['lastName']}" for record in records]

# "User" Collection has the following structure: { id, firstName, lastName }
agent.customize_collection("user").add_field(
  # Create a first field which is computed by concatenating the first and last names
    "displayName",
    {
        "column_type": "String",
        "dependencies": ["firstName", "lastName"],
        "get_values": get_display_name,
    },
).add_field(
    "displayNameCaps",
    {
        "column_type": "String",
        "dependencies": ["displayName"],
        "get_values": lambda records, context: [
            record["displayName"].upper() for record in records
        ],
    },
)

Adding a field that depends on a many-to-one relationship

We can improve the previous example by adding the city of the user to the display name.

# Structure:
# User    { id, addressId, firstName, lastName }
# Address { id, city }
agent.customize_collection("user").add_field(
    "displayName",
    {
        "column_type": "String",
        # We added 'address:city' in the list of dependencies,
        # which tells forest to fetch the related record
        "dependencies":["firstName", "lastName", "address:city"],
        "get_values": lambda records, context: [
            f"{record['firstName']} {record['lastName']} (from {record['customer']['city']})"
            for record in records
      ],
    },
)

Adding a field that depends on a one-to-many relationship

Let's now add a user.totalSpending field by summing the amount of all orders.

from typing import Any, List
from forestadmin.datasource_toolkit.context.collection_context import CollectionCustomizationContext
from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAlias
from forestadmin.datasource_toolkit.interfaces.query.aggregation import Aggregation,
from forestadmin.datasource_toolkit.interfaces.query.condition_tree.nodes.leaf import ConditionTreeLeaf

# Structure
# Customer  { id }
# Order { id, customerId, amount }
async def get_user_spending_values(
    records: List[RecordsDataAlias], context: CollectionCustomizationContext
) -> List[Any]:
    record_ids = [record["id"] for record in records]
    condition = {
        "conditionTree": [ConditionTreeLeaf("customer_id", "in", record_ids)]
    }
    aggregation = Aggregation(
        {"operation": "Sum", "field": "amount", "groups": [{"field": "customer_id"}]},
    )

    # We're using Forest Admin's query interface (you can use an ORM or a plain SQL query)
    rows = await context.datasource.get_collection("order").aggregate(
        condition, aggregation
    )
    ret = []
    for record in records:
        filtered = list(
            filter(
                lambda row: row["group"]["customer_id"] == record["id"], rows
            )
        )
        row = filtered[0] if len(filtered) == 1 else {}
        ret.append(row.get("value", 0))
    return ret

agent.customize_collection("Customer").add_field(
    "TotalSpending",
    {
        "column_type": "Number",
        "dependencies": ["id"],
        "get_values": get_user_spending_values
    },
)

Adding a field fetching data from an API

Let's imagine that we want to check if the email address of our users is deliverable. We can use a verification API to perform that work.

The API we're using is fictional, and the structure of the response is:

{
  "username1@domain.com": {
    "usernameChecked": false,
    "usernameValid": null,
    "domainValid": true
  },
  "username2@domain.com": {
    "usernameChecked": false,
    "usernameValid": null,
    "domainValid": true
  }
}
from typing import Any, List

from forestadmin.datasource_toolkit.context.collection_context import (
    CollectionCustomizationContext
)
from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAlias
from fake import EmailVerificationClient

client = EmailVerificationClient()
client.set_api_key("MY_FAKE_API_KEY")

# "User" Collection has the following structure: { id, email }
async def get_user_spending_values(
    records: List[RecordsDataAlias], context: CollectionCustomizationContext
) -> List[Any]:
    emails = [record["email"] for record in records]
    response = client.verifyEmails(emails)
    # Always return values in the same order than the source records
    ret = []
    for record in records:
        check = response[record["email"]]
        ret.append(
            check["domainValid"]
            and (not check["usernameChecked"] or check["usernameValid"])
        )
    return ret

agent.customize_collection("User").add_field(
    "TotalSpending",
    {
        "column_type":"Boolean",
        "dependencies":["email"],
        "get_values":get_user_spending_values
    },
)

Performance

When adding many fields, keep in mind that:

  • You should refrain from making queries to external services

    • Use relationships in the dependencies array when that is possible

    • Use batch APIs calls instead of performing requests one by one inside of the records.map handler.

  • Only add fields you need in the dependencies list

    • This will reduce the pressure on your data sources (fewer columns to fetch)

    • And increase the probability of reducing the number of records that will be passed to your handler (records are deduplicated).

  • Do not duplicate code between handlers of different fields: fields can depend on each other (no cycles allowed).

PreviousFieldsNextMove, rename and remove fields

Last updated 7 months ago

Was this helpful?

Type of the new field which can be or

any primitive
composite type