This is the official documentation of the forestadmin-agent-django and forestadmin-agent-flask Python agents.
Forest Admin allows creating new Fields on any Collection, either computationally, by fetching data on an external API or based on other data that is available on the connected data sources.
How does it work?
When creating a new field you will need to provide:
List of fields that you need from the source records and linked records in order to run the handler
get_values
Handler which computes the new value for a batch of records
enum_values (optional)
When columnType is Enum, you must specify the values that the field will support
Examples
Adding a field by concatenating other fields
This example adds a user.displayName field, which is computed by concatenating the first and last names.
from typing import Any, Listfrom forestadmin.datasource_toolkit.context.collection_context import ( CollectionCustomizationContext)from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAliasdefget_display_name(records:List[RecordsDataAlias],context: CollectionCustomizationContext) -> List[Any]:return [f"{record['firstName']}{record['lastName']}"for record in records]# "User" Collection has the following structure: { id, firstName, lastName }agent.customize_collection("user").add_field("displayName", {"column_type": "String","dependencies": ["firstName", "lastName"],"get_values": get_display_name, },)
Adding a field that depends on another computed field
This example adds a user.displayName field, which is computed by concatenating the first and last names, and then another which capitalize it.
from typing import Any, Listfrom forestadmin.datasource_toolkit.context.collection_context import ( CollectionCustomizationContext)from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAliasdefget_display_name(records:List[RecordsDataAlias],context: CollectionCustomizationContext) -> List[Any]:return [f"{record['firstName']}{record['lastName']}"for record in records]# "User" Collection has the following structure: { id, firstName, lastName }agent.customize_collection("user").add_field(# Create a first field which is computed by concatenating the first and last names"displayName", {"column_type": "String","dependencies": ["firstName", "lastName"],"get_values": get_display_name, },).add_field("displayNameCaps", {"column_type": "String","dependencies": ["displayName"],"get_values": lambdarecords, context: [ record["displayName"].upper() for record in records ], },)
Adding a field that depends on a many-to-one relationship
We can improve the previous example by adding the city of the user to the display name.
# Structure:# User { id, addressId, firstName, lastName }# Address { id, city }agent.customize_collection("user").add_field("displayName", {"column_type": "String",# We added 'address:city' in the list of dependencies,# which tells forest to fetch the related record"dependencies":["firstName", "lastName", "address:city"],"get_values": lambdarecords, context: [f"{record['firstName']}{record['lastName']} (from {record['customer']['city']})"for record in records ], },)
Adding a field that depends on a one-to-many relationship
Let's now add a user.totalSpending field by summing the amount of all orders.
from typing import Any, Listfrom forestadmin.datasource_toolkit.context.collection_context import CollectionCustomizationContextfrom forestadmin.datasource_toolkit.interfaces.records import RecordsDataAliasfrom forestadmin.datasource_toolkit.interfaces.query.aggregation import Aggregation,from forestadmin.datasource_toolkit.interfaces.query.condition_tree.nodes.leaf import ConditionTreeLeaf# Structure# Customer { id }# Order { id, customerId, amount }asyncdefget_user_spending_values(records: List[RecordsDataAlias],context: CollectionCustomizationContext) -> List[Any]: record_ids = [record["id"]for record in records] condition ={"conditionTree": [ConditionTreeLeaf("customer_id", "in", record_ids)]} aggregation =Aggregation( {"operation": "Sum", "field": "amount", "groups": [{"field": "customer_id"}]}, )# We're using Forest Admin's query interface (you can use an ORM or a plain SQL query) rows =await context.datasource.get_collection("order").aggregate( condition, aggregation ) ret = []for record in records: filtered =list(filter(lambdarow: row["group"]["customer_id"] == record["id"], rows ) ) row = filtered[0]iflen(filtered)==1else{} ret.append(row.get("value", 0))return retagent.customize_collection("Customer").add_field("TotalSpending", {"column_type": "Number","dependencies": ["id"],"get_values": get_user_spending_values },)
Adding a field fetching data from an API
Let's imagine that we want to check if the email address of our users is deliverable. We can use a verification API to perform that work.
The API we're using is fictional, and the structure of the response is:
from typing import Any, Listfrom forestadmin.datasource_toolkit.context.collection_context import ( CollectionCustomizationContext)from forestadmin.datasource_toolkit.interfaces.records import RecordsDataAliasfrom fake import EmailVerificationClientclient =EmailVerificationClient()client.set_api_key("MY_FAKE_API_KEY")# "User" Collection has the following structure: { id, email }asyncdefget_user_spending_values(records: List[RecordsDataAlias],context: CollectionCustomizationContext) -> List[Any]: emails = [record["email"]for record in records] response = client.verifyEmails(emails)# Always return values in the same order than the source records ret = []for record in records: check = response[record["email"]] ret.append( check["domainValid"]and (not check["usernameChecked"] or check["usernameValid"]) )return retagent.customize_collection("User").add_field("TotalSpending", {"column_type":"Boolean","dependencies":["email"],"get_values":get_user_spending_values },)
Performance
When adding many fields, keep in mind that:
You should refrain from making queries to external services
Use relationships in the dependencies array when that is possible
Use batch APIs calls instead of performing requests one by one inside of the records.map handler.
Only add fields you need in the dependencies list
This will reduce the pressure on your data sources (fewer columns to fetch)
And increase the probability of reducing the number of records that will be passed to your handler (records are deduplicated).
Do not duplicate code between handlers of different fields: fields can depend on each other (no cycles allowed).