Please be sure of your agent type and version and pick the right documentation accordingly.
This is the documentation of the forest-express-sequelize and forest-express-mongoose Node.js agents that will soon reach end-of-support.
forest-express-sequelize v9 and forest-express-mongoose v9 are replaced by v1.
Please check your agent type and version and read on or switch to the right documentation.
This is still the latest Ruby on Rails documentation of the forest_liana agent, you’re at the right place, please read on.
This is the documentation of the django-forestadmin Django agent that will soon reach end-of-support.
If you’re using a Django agent, notice that django-forestadmin v1 is replaced by v1.
If you’re using a Flask agent, go to the v1 documentation.
Please check your agent type and version and read on or switch to the right documentation.
This is the documentation of the forestadmin/laravel-forestadmin Laravel agent that will soon reach end-of-support.
If you’re using a Laravel agent, notice that forestadmin/laravel-forestadmin v1 is replaced by v3.
If you’re using a Symfony agent, go to the v1 documentation.
Please check your agent type and version and read on or switch to the right documentation.
Create a Smart Chart
On the previous page, we learned how API-based charts allow you to fetch any dataset from a custom endpoint. But using the finite list of predefined charts (Single, Distribution, Time-based, etc.), you are still constrained by how that data is displayed. With Smart Charts, you can code exactly what data you want and how you want it displayed!
You need a Starter plan or above to create Smart charts
Creating a Smart Chart
To create a chart and access the Smart Chart Editor, click on the Edit Smart Chart button:
Next, use the Template, Component, and Style tabs to create your customized chart. At any point, you can render your chart by clicking on the Run code button.
Don't forget to click on Create Chart (or Save if the chart is already created) once you're done!
If you are creating a record-specific smart chart (in the record Analytics tab), the record object is directly accessible (either through this.args.record in the component or @record in the template).
Creating a Table Chart
Our first Smart Chart example will be a simple table: however you may choose to make it as complex and customized as you wish.
To query a custom route of your Forest server as your datasource, you may use this syntax instead:
Component tab
import Component from '@glimmer/component';
import { inject as service } from '@ember/service';
import { tracked } from '@glimmer/tracking';
export default class extends Component {
@service lianaServerFetch;
@tracked users;
constructor(...args) {
super(...args);
this.fetchData();
}
async fetchData() {
const response = await this.lianaServerFetch.fetch(
'/forest/custom-data',
{}
);
this.users = await response.json();
}
}
Creating a Bar Chart
This second example shows how you can achieve any format of charts, as you can benefit from external libraries like D3js.
Template tab
<div class="c-smart-view">
{{this.chart}}
</div>
Component tab
import Component from '@glimmer/component';
import {
loadExternalStyle,
loadExternalJavascript,
} from 'client/utils/smart-view-utils';
import { action } from '@ember/object';
import { tracked } from '@glimmer/tracking';
export default class extends Component {
constructor(...args) {
super(...args);
this.loadPlugin();
}
@tracked chart;
@tracked loaded = false;
async loadPlugin() {
await loadExternalJavascript('https://d3js.org/d3.v6.min.js');
this.loaded = true;
this.renderChart();
}
async fetchData() {
const response = await this.lianaServerFetch.fetch(
'/forest/custom-data',
{}
);
const data = await response.json();
return data;
}
@action
async renderChart() {
if (!this.loaded) {
return;
}
const color = 'steelblue';
// Don't comment the lines below if you want to fetch data from your Forest server
// const usersData = await this.fetchData()
// const data = Object.assign(usersData.sort((a, b) => d3.descending(a.points, b.points)), {format: "%", y: "↑ Frequency"})
// To remove if you're using data from your Forest server
const alphabet = await d3.csv(
'https://static.observableusercontent.com/files/09f63bb9ff086fef80717e2ea8c974f918a996d2bfa3d8773d3ae12753942c002d0dfab833d7bee1e0c9cd358cd3578c1cd0f9435595e76901508adc3964bbdc?response-content-disposition=attachment%3Bfilename*%3DUTF-8%27%27alphabet.csv',
function (d) {
return {
name: d.letter,
value: +d.frequency,
};
}
);
const data = Object.assign(
alphabet.sort((a, b) => d3.descending(a.value, b.value)),
{ format: '%', y: '↑ Frequency' }
);
const height = 500;
const width = 800;
const margin = { top: 30, right: 0, bottom: 30, left: 40 };
const x = d3
.scaleBand()
.domain(d3.range(data.length))
.range([margin.left, width - margin.right])
.padding(0.1);
const y = d3
.scaleLinear()
.domain([0, d3.max(data, (d) => d.value)])
.nice()
.range([height - margin.bottom, margin.top]);
const xAxis = (g) =>
g.attr('transform', `translate(0,${height - margin.bottom})`).call(
d3
.axisBottom(x)
.tickFormat((i) => data[i].username)
.tickSizeOuter(0)
);
const yAxis = (g) =>
g
.attr('transform', `translate(${margin.left},0)`)
.call(d3.axisLeft(y).ticks(null, data.format))
.call((g) => g.select('.domain').remove())
.call((g) =>
g
.append('text')
.attr('x', -margin.left)
.attr('y', 10)
.attr('fill', 'currentColor')
.attr('text-anchor', 'start')
.text(data.y)
);
const svg = d3.create('svg').attr('viewBox', [0, 0, width, height]);
svg
.append('g')
.attr('fill', color)
.selectAll('rect')
.data(data)
.join('rect')
.attr('x', (d, i) => x(i))
.attr('y', (d) => y(d.value))
.attr('height', (d) => y(0) - y(d.value))
.attr('width', x.bandwidth());
svg.append('g').call(xAxis);
svg.append('g').call(yAxis);
this.chart = svg.node();
}
}
In the above snippet, notice how we import the D3js library. Of course, you can choose to use any other library of your choice.
The resulting chart can be resized to fit your use:
Creating a density map
This last example shows how you can achieve virtually anything, since you are basically coding in a sandbox. There's no limit to what you can do with Smart charts.
Template tab
<div class="c-smart-view">
{{this.chart}}
</div>
Component tab
import Component from '@glimmer/component';
import {
loadExternalStyle,
loadExternalJavascript,
} from 'client/utils/smart-view-utils';
import { action } from '@ember/object';
import { tracked } from '@glimmer/tracking';
export default class extends Component {
constructor(...args) {
super(...args);
this.loadPlugin();
}
@tracked chart;
@tracked loaded = false;
async loadPlugin() {
await loadExternalJavascript('https://d3js.org/d3.v6.min.js');
await loadExternalJavascript('https://unpkg.com/topojson-client@3');
this.loaded = true;
this.renderChart();
}
@action
async renderChart() {
if (!this.loaded) {
return;
}
const height = 610;
const width = 975;
const format = d3.format(',.0f');
const path = d3.geoPath();
// This is the JSON for drawing the contours of the map
// Ref.: https://github.com/d3/d3-fetch/blob/v2.0.0/README.md#json
const us = await d3.json(
'https://static.observableusercontent.com/files/6b1776f5a0a0e76e6428805c0074a8f262e3f34b1b50944da27903e014b409958dc29b03a1c9cc331949d6a2a404c19dfd0d9d36d9c32274e6ffbc07c11350ee?response-content-disposition=attachment%3Bfilename*%3DUTF-8%27%27counties-albers-10m.json'
);
const features = new Map(
topojson.feature(us, us.objects.counties).features.map((d) => [d.id, d])
);
// Population should contain data about the density
const population = await d3.json(
'https://static.observableusercontent.com/files/beb56a2d9534662123fa352ffff2db8472e481776fcc1608ee4adbd532ea9ccf2f1decc004d57adc76735478ee68c0fd18931ba01fc859ee4901deb1bee2ed1b?response-content-disposition=attachment%3Bfilename*%3DUTF-8%27%27population.json'
);
const data = population.slice(1).map(([population, state, county]) => {
const id = state + county;
const feature = features.get(id);
return {
id,
position: feature && path.centroid(feature),
title: feature && feature.properties.name,
value: +population,
};
});
const radius = d3.scaleSqrt([0, d3.max(data, (d) => d.value)], [0, 40]);
const svg = d3.create('svg').attr('viewBox', [0, 0, width, height]);
svg
.append('path')
.datum(topojson.feature(us, us.objects.nation))
.attr('fill', '#ddd')
.attr('d', path);
svg
.append('path')
.datum(topojson.mesh(us, us.objects.states, (a, b) => a !== b))
.attr('fill', 'none')
.attr('stroke', 'white')
.attr('stroke-linejoin', 'round')
.attr('d', path);
const legend = svg
.append('g')
.attr('fill', '#777')
.attr('transform', 'translate(915,608)')
.attr('text-anchor', 'middle')
.style('font', '10px sans-serif')
.selectAll('g')
.data(radius.ticks(4).slice(1))
.join('g');
legend
.append('circle')
.attr('fill', 'none')
.attr('stroke', '#ccc')
.attr('cy', (d) => -radius(d))
.attr('r', radius);
legend
.append('text')
.attr('y', (d) => -2 * radius(d))
.attr('dy', '1.3em')
.text(radius.tickFormat(4, 's'));
svg
.append('g')
.attr('fill', 'brown')
.attr('fill-opacity', 0.5)
.attr('stroke', '#fff')
.attr('stroke-width', 0.5)
.selectAll('circle')
.data(
data
.filter((d) => d.position)
.sort((a, b) => d3.descending(a.value, b.value))
)
.join('circle')
.attr('transform', (d) => `translate(${d.position})`)
.attr('r', (d) => radius(d.value))
.append('title')
.text((d) => `${d.title} ${format(d.value)}`);
this.chart = svg.node();
}
}
In the above snippet, notice how we import the D3js library. Of course, you can choose to use any other library of your choice.
The resulting chart can be resized to fit your use:
Creating a Cohort Chart
This is another example to help you build a Cohort Chart.